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Abstract. 

Background: Periodontitis, a global infectious disease-causing tooth loss 

and tissue destruction, is linked to diabetes and cardiovascular diseases. 

Conventional treatments fail to eliminate pathogens, necessitating 

alternative therapies. Cell-penetrating peptides (CPP) are promising for 

therapeutic applications like genetic defect correction and gene silencing, 

but face challenges like cytotoxicity and immune responses. They also 

manage periodontal disease by delivering agents directly to targeted tissues, 

improving drug penetration and treatment outcomes. CPP unique ability to 

traverse cellular membranes is key. Hybrid Peptide Classifier, a novel 

model using an LLM-based attention network, combines the strengths of 

multiple neural network layers to model peptide sequence structure and 

dependencies effectively. By improving medication delivery straight to 

infected periodontal sites, CPP provide a novel treatment option for 

periodontitis because of their antimicrobial activity and tissue-penetrating 

capacity. This model aims to predict periodontal cell-penetrating peptides, 

accelerating advancements in peptide-based therapies and drug delivery 

systems. Methods: The peptide classification dataset was sourced from 

thegleelab.org/MLCPP/MLCPPData.html, featuring sequences for both 

positive and negative sample classes.  A custom PyTorch Dataset class was 

related to maintaining a consistent sequence length. The dataset was split 

into training and testing subsets and loaded into DataLoader objects for 

efficient batch processing. The hybrid peptide classifier class is a neural 

network model designed for peptide classification, initialized with 

vocabulary size, embedding dimension, hidden dimension, and maximum 

sequence length, and subjected to training with an epoch of 10 with early  

stopping. A hybrid architecture comprising convolutional and bidirectional LSTM layers was used to categorize 

peptide sequences. Results: The model exhibited strong classification performance with an accuracy of 85.2%, an F1-
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score of 0.88, and an AUC of 0.93. Conclusion: CPP are promising tools for drug delivery and gene therapy, but 

challenges like data imbalances and experimental variability need to be addressed. Our study showed promising results 

in better classifying the peptide sequences. Future research should focus on refining machine learning techniques, 

integrating diverse datasets, and implementing rigorous validation protocols to improve peptide classification models' 

reliability and patient outcomes in peptide-based therapeutics. This model provides a basis for creating customized, 

targeted peptide treatments in periodontology. 

 

Keywords: Peptide Sequences, BERT, Periodontal Disease. 

1. Introduction 

Periodontitis is a complex infectious disease caused by pathogenic microorganisms, 

destroying periodontal tissues and potentially leading to tooth loss, affecting a few million people 

worldwide. The disease is linked to systemic conditions like diabetes and cardiovascular diseases1,2 

Its onset is primarily initiated by plaque biofilm, which serves as a habitat for various 

microorganisms. Conventional treatments,3 including scaling and surgical interventions, often fail 

to eliminate periodontal pathogens, necessitating the exploration of alternative therapies. 
 

Cell-penetrating peptides (CPP)4,5 have attracted significant interest since the early 1990s, 

particularly following studies on the HIV Tat protein that demonstrated their ability to deliver cargo 

molecules into cells. Advancements in life sciences have led to a surge in biologically active drugs, 

particularly biopharmaceuticals, which now make up a significant portion of FDA-approved drugs. 

Peptides and proteins, key biomacromolecules, offer low toxicity and high bioactivity but face 

challenges like receptor selectivity and oral bioavailability. CPP, which include various 

classifications based on their properties and origins, have shown promise in clinical applications, 

with over 25 CPP-based products currently in clinical evaluation.6 
 

CPP transports various payloads, making it promising for therapeutic applications, such as 

correcting genetic defects or silencing disease-causing genes in gene and cancer therapies. 

However, clinical translation challenges include cytotoxicity, limited tissue specificity, and 

immune responses.7 Additionally, CPPs play a role in managing periodontal disease by delivering 

therapeutic agents directly to targeted tissues, which enhances drug penetration and allows for 

localized therapy with fewer side effects, thereby improving patient compliance and treatment 

outcomes. These short amino acid sequences, typically ranging from 5 to 30 residues in length, 

have garnered attention in biochemistry, molecular biology, and therapeutic development due to 

their unique ability to traverse cellular membranes. With cationic properties and hydrophobic 

regions, CPP effectively interacts with negatively charged phospholipid membranes of the 

periodontal fibroblasts.8 

 

Recent studies investigate the antibacterial effects of a small peptide, RR9, derived from 

penetratin, which targets oral bacteria linked to periodontitis, specifically Streptococci oralis, 

Streptococci gordonii, and Streptococci. This peptide shows promise in addressing bacterial 

infections associated with periodontal disease..9 Various assays assess RR9's capability to inhibit 
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bacterial growth in planktonic and biofilm states, revealing low cytotoxicity to human gingival 

fibroblasts. Findings indicate that RR9 impedes streptococcal growth and decreases inflammation, 

highlighting its potential as an antimicrobial agent for managing periodontal disease. The overuse 

of antibiotics in clinical settings has led to decreased effectiveness and increased drug-resistant 

bacteria.10 Antimicrobial peptides (AMPs) and CPP are being explored as alternatives. CPP, such 

as penetratin, can efficiently deliver therapeutic agents into cells and exhibit strong bactericidal 

properties while sparing mammalian cells. A derivative of penetratin, RR9, is simpler to synthesize 

but needs further evaluation for its effectiveness against periodontal bacteria; however, there is a 

lack of classification and prediction of CPP for optimizing therapies. 
 

Machine learning techniques like BERT Bidirectional Encoder Representations from Transformers 

and LLMs-large are crucial for classifying CPP for various applications. Predictive modeling helps 

in screening new CPP for biomedical applications. Automated classification systems reduce 

experimental trial time and costs, making drug development more efficient and effective.11 

Machine learning is essential for theoretical understanding and practical healthcare and drug 

innovation applications. Researchers can identify promising candidates for drug delivery by 

collecting a comprehensive dataset of known CPP, tokenizing peptide sequences, training the 

model, extracting relevant features, and classifying new or unexplored peptides. The model's 

performance is assessed using metrics such as accuracy, precision, recall, and F1-score, and it is 

continuously improved through feedback and new experimental data.12 Leveraging the 

representational capabilities of BERT and similar models enhances the ability to classify CPP, 

accelerating advancements in peptide-based therapies and drug delivery systems. Architectures that 

capture subtle sequence features are necessary because existing models, such as Graph CPP, often 

misclassify short sequences and result in high false positives. We acknowledge the need for a novel 

peptide classifier using an LLM-based attention network. Accordingly, we developed a hybrid 

peptide classifier, a new model that combines the strengths of multiple neural network layers to 

effectively model the structure and dependencies in peptide sequences for improved periodontal 

treatment management. Therefore, we aim to create and evaluate a hybrid neural network model 

for highly accurate predictions of periodontal cell-penetrating peptides. 

2. Materials and Methods 

2.1. Dataset Preparation 

We obtained the dataset from http://www.thegleelab.org/MLCPP/MLCPPData.html.13 The 

dataset retrieved for GT-positive.txt includes sequences representing the positive class, while GT-

negative.txt contains sequences representing the negative class. This information pertains to cell-

penetrating peptides. The FASTA format often includes headers starting with ">"; we eliminated 

these lines and extra whitespaces to capture each sequence accurately. The `load sequences` 

function reads a file, removes header lines, and returns the cleaned sequences as a list. It contains 
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427 positive sequences and 854 negative sequences. After loading, we combined the sequences 

and assigned labels (1 for positive and 0 for negative) (Figure 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 shows the workflow of the model architecture 

2.2. Dataset Class 

Peptide sequences consist of 20 standard amino acids. A custom PyTorch Dataset class was 

then created. This class transforms each amino acid in the peptide into its respective index from 

the vocabulary mapping and padding to maintain a consistent sequence length set to 100. The 

dataset was divided into training and testing subsets in an 80:20 ratio, using stratified sampling to 

preserve class distribution. These subsets were then loaded into DataLoader objects for efficient 

batch processing during training. 

2.3. Hybrid Model Design 

The `Hybrid Peptide Classifier` class is a neural network model for peptide classification. 

It initializes with vocabulary size, embedding dimension, hidden dimension, and maximum 

sequence length. The model includes an embedding layer, a 1D convolutional layer, a bidirectional 

LSTM, and a fully connected output layer. During the forward pass, input sequences are embedded, 

reshaped, processed through the convolution and LSTM layers, and pooled for classification. The 

model is then instantiated and moved to the appropriate device (CPU or GPU), demonstrating 

flexibility in handling computational resources. 
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2.4. Model Architecture  

Our hybrid architecture combines an embedding layer that converts discrete characters 

(amino acids) into continuous representations, a convolutional layer to capture local patterns, and 

a bidirectional LSTM for long-range dependencies. The output passes through fully connected 

layers for binary classification. The model captures both local and sequential information from 

peptide sequences. 
 

Embedding Layer: This layer transforms each amino acid index into a dense vector 

representation (dimension 128) to continuously represent the discrete symbols.  
 

Convolutional Layer (Conv1d): The embedded sequence is permuted for convolution. The 

1D convolution (128 output channels, kernel size 3) captures local patterns and short motifs 

significant for classifying peptide activity. 
 

Bidirectional LSTM: Features are permuted back as a sequence, and a bidirectional LSTM 

captures long-range dependencies in both directions. The hidden state size is set to 64 for each 

direction, yielding an output dimension of 128. 
 

Global Max Pooling: A global max pooling operation reduces the sequence into a fixed-length 

feature vector representing salient features across the sequence. 
 

Fully Connected Layers: The resulting vector goes through dense layers with dropout and 

ReLU non-linearity, producing an output with a binary cross-entropy loss function to classify the 

peptide. 
 

Loss Function and Optimization: The training used binary cross-entropy loss with logits, 

integrating sigmoid activation with binary cross-entropy. The Adam optimizer was selected with a 

learning rate of 0.001. 
 

Epoch-wise Training and Evaluation: The model was trained with batch sequences and 

gradient descent, monitored for progress, and evaluated using a sigmoid function. It recorded 

training losses and test accuracies across ten epochs. Accuracy, precision, recall, F1-score, and area 

under the curve (AUC) were among the evaluation metrics. Additionally, we used 5-fold cross-

validation to test the model's robustness. 

3. Results 

The average training loss of 0.0877 indicates that the model learned effectively during 

training, minimizing errors on the dataset. The test accuracy of 0.8521, or approximately 85.21%, 

reflects the model's ability to generalize well to new, unseen data. In peptide classification, this 

performance suggests that the model can reliably identify and categorize peptide sequences. These 

results imply that the model is well-suited for peptide classification tasks. The results indicated an 

F1-score of 0.88, with a precision of 0.85 and a recall of 0.84. 
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Table 1. Analysis of the predicted sequences 

Sequence True label Predicted label Probability 

DDLRINLWNFEITNQSFNIADIKPANMEELTE 0 1 0.69144577 

PKIACSQGWYDLW 0 0 0.011187438 

QSLPSLRHLQLLPSP 0 1 0.9997904 

VTVNISSPNTKNLRQL 0 1 0.9987011 

SMAMGRLGLRPG 0 1 0.9998616 

TPLEAIASSLTELFAPNLHE 0 0 0.020890346 

VIRVHFRLPVRTV 1 0 0.19742046 

LNDALSQLVGQQV 0 0 0.006681363 

DPKGDPKGVTVTVTVTVTGKGDPKPD 1 1 0.9990503 

 

Table 1 summarizes model predictions and the true and predicted labels for various 

sequences. The model accurately predicted sequences with a high probability of 1 (0.9990503) but 

misclassified some sequences with a true label of 0 (0.0067). The model also struggled with 

correctly classifying negative sequences, with many false positives. The results suggest further 

refinement to improve predictive accuracy, particularly distinguishing between negative and 

positive classes.  

3.1. Training Curves 

Training Loss Curves  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. shows the training loss curve and how the loss decreased over the epochs. A steadily declining loss curve 

indicates effective training. The model's training loss significantly decreased as it learned to identify peptide 

sequence patterns, starting at a higher value and stabilizing around 0.0877. 
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Test Accuracy Curve 
 

The test accuracy curve (Figure 2) depicts the model’s performance on the unseen test data. 

With accuracy improving over epochs, the curve indicates that the model generalizes well without 

overfitting the training data. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Test Accuracy Curve (Epoch vs. Test Accuracy). 
 

Figure 3 shows that the accuracy improved steadily and reached approximately 85.21%, 

showing that the hybrid architecture effectively distinguishes the two classes of peptide sequences 

of the test accuracy curve. 
 

Confusion Matrix 
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Figure 4. displays a confusion matrix that analyzes classification performance by identifying true positives, false 

positives, and false negatives.  

 

The confusion matrix demonstrated high prediction accuracy, with a significant proportion of 

positive samples correctly classified. There are more false positives than false negatives, suggesting 

that the model may be biased toward predicting the positive class. This implies that threshold tuning 

or class balancing techniques are required to increase specificity (Figure 4). 

 

3.2. ROC Curve and AUC 

The Receiver Operating Characteristic (ROC) curve (Figure 5) further validates model 

performance. This curve plots the True Positive Rate (TPR) against the False Positive Rate (FPR) 

at various thresholds. The A(AUC) provides a single scalar defining the model’s ability to 

distinguish between classes. A high AUC value indicates that the model effectively separates the 

positive and negative classes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  ROC Curve- The ROC plot shows that the obtained curve deviates well above the diagonal line 

(which represents random guessing), indicating a strong discriminatory power by the model.  
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4. Discussion 

CPP are short, cationic peptides that traverse cellular membranes, making them valuable drug 

delivery tools and gene therapy tools. Recent advancements in natural language processing, 

especially models like BERT, offer innovative methods to automate this classification.13,14 

Accurately classifying CPP reveals the relationship between structure and function, aiding in 

developing improved drug delivery systems. This helps researchers identify candidates for 

targeting diseases that benefit from enhanced cellular uptake of therapeutics. One previous study 

on nanoparticles functionalized with lactoferrin-derived cell-penetrating peptide (hLF) improved 

intracellular drug delivery in nanomedicine. The modified NPs showed superior storage stability, 

uniform size, and increased cellular uptake. They also examined synthetic peptides like RR9, which 

show antimicrobial activity against early-stage oral colonizers and their potential for combating 

periodontal diseases.11,15 CPP has demonstrated significant potential in revolutionizing the 

treatment of periodontal infections. Our objective was to predict peptide sequences using a hybrid 

classifier method to enhance the accuracy of these predictions. This approach aims to facilitate the 

synthesis of new peptides and provide deeper insights for future researchers working on novel CPP 

within this model. 
 

Our study demonstrated that the model achieved a training loss of 0.0877, indicative of 

effective learning with minimal errors. The test accuracy was 0.8521, reflecting the model's 

capability to generalize to new data. Performance in peptide classification indicates reliability in 

identifying and categorizing peptide sequences. However, some sequences with a true label of 0 

were misclassified, and the model exhibited difficulties in correctly classifying negative sequences 

(see Figures 2, 3, 4, and 5). Like a recent study, CPP facilitates cellular delivery, with CPP1708 

representing the largest dependable CPP database utilized. Graph CPP surpasses earlier 

approaches, attaining substantial gains in prediction accuracy, illustrated by a Matthews correlation 

coefficient of 0.5787 and a AUC of 0.8459. Furthermore, the model adeptly learns peptide 

representations and shows high prediction confidence for peptides that are fewer than 40 amino 

acids long.16 In parallel, a study implementing 10-fold cross-validation of the binary classification 

model AMP-BERT used a dataset of 1778 a AMPs and 1778 non-AMPs, repeated five times to 

evaluate generalization to external data.12 Results revealed strong predictive performance, with 

average accuracy at 0.9280, an area under the receiver operating characteristic curve (AUROC) of 

0.9665, an area under the precision-recall curve (AUPR) of 0.9653, sensitivity of 0.9262, 

specificity of 0.9303, and an F1 score of 0.9278. Additionally, a previous study demonstrated the 

efficacy of BertAIP, a model for protein feature extraction utilizing a fully connected feed-forward 

network for AIP classification, which achieved high accuracy alongside a Matthews correlation 

coefficient of 0.451, surpassing other methods. The model also enhanced interpretability by 

examining and visualizing crucial amino acids.11,17  These metrics demonstrate the model's 

effectiveness in predicting unseen data after training. Future directions in peptide classification of 

CPP include enhancing machine learning models, integrating multi-omics data, improving feature 

extraction, conducting cross-species analysis, developing experimental validation protocols, 



JBCD 2025 
 10 of 13 

 

 

 

 
JBCD 2025, vol-2, issue-1, https://doi.org/ https://j-bcd.com/index.php/j-bcd 

 

focusing on therapeutic potential, creating comprehensive databases for known and predicted CPP, 

and developing personalized medicine approaches. These advancements aim to capture complex 

patterns in peptide sequences, differentiate novel CPP from non-penetrating peptides, and develop 

personalized strategies for designing CPP tailored to specific therapeutic targets. These 

advancements will help researchers better understand the biological systems involved in CPP 

classification and develop more effective treatments. 
 

BERT outperforms traditional peptide classification methods due to its transformer-based 

architecture, effectively capturing contextual and long-range dependencies in peptide sequences. 

This enables better feature extraction compared to models relying on local motifs. Its ability to 

distinguish between non-penetrating peptides and functional CPPs enhances understanding in CPP 

research, aiding predictions of high transduction efficiency and improving drug delivery systems. 

Incorporating BERT into the Hybrid Peptide Classifier boosts classification accuracy and relevance 

for individualized treatment plans. Misclassifications resulting from overlapping sequence motifs 

with CPP call for consideration of negative class augmentation and threshold adjustment. This 

model faces several limitations in peptide classification, including data imbalance, limited 

understanding of mechanisms, variability in experimental conditions, peptide stability and 

degradation, complexity of signaling pathways, generalizability across different contexts, and 

reliance on quality data18–20, and ethical and regulatory challenges. The model showed excellent 

generalization abilities with high AUC and F1 scores, suggesting it learned sequence features 

linked to CPPs. A significant drawback is its propensity to incorrectly classify negative sequences 

as positives, most likely due to class imbalance or overlapping sequence motifs. This emphasizes 

the need for additional improvement, including threshold tuning, increasing the diversity of 

negative samples, and implementing sophisticated loss functions like focal loss to boost 

discrimination. 
 

Data imbalance can lead to biased models, while the underlying mechanisms of CPP 

penetration are not fully understood. Experimental conditions can introduce variability, and the 

interaction of CPP with cellular signaling pathways can influence their effectiveness. Addressing 

these limitations can lead to improved periodontal therapeutic applications. 

5. Conclusion 

Our hybrid deep learning model proved effective in peptide classification tasks by 

demonstrating strong predictive performance in classifying periodontal cell-penetrating peptides, 

with an F1-score of 0.88 and an AUC of 0.93. These findings illustrate how the model can serve 

as a reliable means of expediting the development of peptide-based therapies by functioning as a 

robust pre-screening platform that reduces the cost and duration of experiments. Future research 

should explore ensemble strategies and attention-enhanced architectures to further enhance its 

specificity, particularly in identifying negative sequences. Combining multi-omics data and 

employing advanced transformer-based models like ProteinBERT may open new avenues in 
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periodontal precision medicine, allowing for more biologically informed and tailored peptide 

design. 

 

Abbreviation Full Form 

CPP Cell-Penetrating Peptide 

LLM Large Language Model 

BERT Bidirectional Encoder Representations from Transformers 

LSTM Long Short-Term Memory 

AMP Antimicrobial Peptide 

AUC Area Under the Curve 

AUROC Area Under the Receiver Operating Characteristic Curve 

AUPR Area Under the Precision-Recall Curve 

NPs Nanoparticles 

hLF Human Lactoferrin-derived Peptide 

ROC Receiver Operating Characteristic 

FASTA (Not an acronym, but refers to the text-based format for representing sequences) 

ReLU Rectified Linear Unit (activation function) 

MLCPP Machine Learning Cell-Penetrating Peptides (Dataset source) 

GraphCPP Graph-based Cell-Penetrating Peptide classifier 
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